Hspa8 Mouse shRNA Plasmid (Locus ID 15481)

CAT#: TL501001

Hspa8 - Mouse, 4 unique 29mer shRNA constructs in lentiviral GFP vector, 5µg of each construct provided



Need custom shRNA service?
Get a free quote

CNY 7,740.00


货期*
2周

规格
    • 1 kit

Product images

经常一起买 (4)
Lenti-vpak packaging kit - packaging plasmids and transfection reagent
    • 10 reactions

CNY 5,420.00


TurboFectin Transfection Reagent (1 mL in 1 vial)
    • 1 ml in 1 vial

CNY 4,090.00


HSPA8 Antibody - middle region
    • 50 ug

CNY 4,628.00


Lateral flow testing sticks used for the semi-quantitative detection of the lentiviral p24 protein, 20 tests
    • 20 Tests

CNY 4,070.00

Specifications

Product Data
Product Name Hspa8 Mouse shRNA Plasmid (Locus ID 15481)
Locus ID 15481
UniProt ID P63017
Synonyms 2410008N15Rik; Hsc70; Hsc71; Hsc73; Hsp73; Hspa10
Vector pGFP-C-shLenti
Format Lentiviral plasmids
Kit Components Hspa8 - Mouse, 4 unique 29mer shRNA constructs in lentiviral GFP vector(Gene ID = 15481). 5µg purified plasmid DNA per construct
29-mer scrambled shRNA cassette in pGFP-C-shLenti Vector, TR30021, included for free.
RefSeq BC006722, BC066191, BC085486, BC089322, BC089457, BC094900, BC106193, NM_031165, NM_031165.1, NM_031165.2, NM_031165.3, NM_031165.4, BC106169, NM_001364480
Summary Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, activation of proteolysis of misfolded proteins and the formation and dissociation of protein complexes. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation. This is achieved through cycles of ATP binding, ATP hydrolysis and ADP release, mediated by co-chaperones. The co-chaperones have been shown to not only regulate different steps of the ATPase cycle of HSP70, but they also have an individual specificity such that one co-chaperone may promote folding of a substrate while another may promote degradation. The affinity of HSP70 for polypeptides is regulated by its nucleotide bound state. In the ATP-bound form, it has a low affinity for substrate proteins. However, upon hydrolysis of the ATP to ADP, it undergoes a conformational change that increases its affinity for substrate proteins. HSP70 goes through repeated cycles of ATP hydrolysis and nucleotide exchange, which permits cycles of substrate binding and release. The HSP70-associated co-chaperones are of three types: J-domain co-chaperones HSP40s (stimulate ATPase hydrolysis by HSP70), the nucleotide exchange factors (NEF) such as BAG1/2/3 (facilitate conversion of HSP70 from the ADP-bound to the ATP-bound state thereby promoting substrate release), and the TPR domain chaperones such as HOPX and STUB1. Acts as a repressor of transcriptional activation. Inhibits the transcriptional coactivator activity of CITED1 on Smad-mediated transcription. Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing. May have a scaffolding role in the spliceosome assembly as it contacts all other components of the core complex. Binds bacterial lipopolysaccharide (LPS) and mediates LPS-induced inflammatory response, including TNF secretion. Participates in the ER-associated degradation (ERAD) quality control pathway in conjunction with J domain-containing co-chaperones and the E3 ligase STUB1.[UniProtKB/Swiss-Prot Function]
shRNA Design These shRNA constructs were designed against multiple splice variants at this gene locus. To be certain that your variant of interest is targeted, please contact techsupport@origene.com. If you need a special design or shRNA sequence, please utilize our custom shRNA service.
Performance Guaranteed OriGene guarantees that the sequences in the shRNA expression cassettes are verified to correspond to the target gene with 100% identity. One of the four constructs at minimum are guaranteed to produce 70% or more gene expression knock-down provided a minimum transfection efficiency of 80% is achieved. Western Blot data is recommended over qPCR to evaluate the silencing effect of the shRNA constructs 72 hrs post transfection. To properly assess knockdown, the gene expression level from the included scramble control vector must be used in comparison with the target-specific shRNA transfected samples.

For non-conforming shRNA, requests for replacement product must be made within ninety (90) days from the date of delivery of the shRNA kit. To arrange for a free replacement with newly designed constructs, please contact Technical Services at techsupport@origene.com. Please provide your data indicating the transfection efficiency and measurement of gene expression knockdown compared to the scrambled shRNA control (Western Blot data preferred).
*Delivery time may vary from web posted schedule. Occasional delays may occur due to unforeseen complexities in the preparation of your product. International customers may expect an additional 1-2 weeks in shipping.
Customer Reviews 
Loading...